Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Sci Sports ; 2022 Aug 10.
Article in French | MEDLINE | ID: covidwho-2238993

ABSTRACT

OBJECTIVES: To measure the impact of the health crisis related to SARS-CoV-2 on the aerobic capacities of healthy patients based on the measurement of VO2 max and VO2 at the first ventilatory threshold (AT). To measure the impact of the introduction of the antibacterial filter on the ventilatory parameter measuring device. MATERIALS AND METHODS: Based on a multicentre (Angers and Cholet), observational and retrospective study, we want to analyze the effect of containment measures and the cessation of sports competitions on the measurement of VO2 max in healthy patients. For each patient, will be collected : the gross value of the max VO2 and indexed to the weight of the patient, as well as its percentage with respect to the expected theoretical value, the value of the VO2 at the aerobic threshold indexed to the wieght of the patient and the usual cardiorespiratory parameters (HR max, RR max, VE max, RER max). Two samples will be analyzed : patients with only one EFX ("unpaired" sample) and patients with multiple successive EFX over three years ("matched" sample). The impact of the antibacterial filter, used in one of the Sports Medicine departments, will be studied as a secondary issue. Statistical analyses were performed with the IBM SPSS 26 software. For all statistical tests, a p value of 0.05 was used in bilateral testing as the significance criterion. RESULTS: There is a significant difference in the value of VO2 max and AT in both the "unpaired" (VO2 max : 36.72 vs 35.08 mL/kg/min, p = 0.014 - AT : 21.03 vs 19.25 mL/kg/min, p < 0.001) and "matched" groups (VO2 max : 2.76 vs 2.64 L/min, p = 0.037 - AT : 1.55 vs 1.38 L/min, p = 0.001), more pronounced in patients over 60 years of age. The impact of the antibacterial filter does not show any particular impact within the "independent" sample. Within the "matched" sample, the significant age difference is not conclusive, but the exclusion of patients over the age of 60 makes the results meaningless.

2.
Front Physiol ; 13: 1078763, 2022.
Article in English | MEDLINE | ID: covidwho-2199129

ABSTRACT

Background: The COVID-19 pandemic and imposed restrictions influenced athletic societies, although current knowledge about mild COVID-19 consequences on cardiopulmonary and physiologic parameters remains inconclusive. This study aimed to assess the impact of mild COVID-19 inflection on cardiopulmonary exercise test (CPET) performance among endurance athletes (EA) with varied fitness level. Materials and Methods: 49 EA (nmale = 43, nfemale = 6, mean age = 39.94 ± 7.80 yr, height = 178.45 cm, weight = 76.62 kg; BMI = 24.03 kgm-2) underwent double treadmill or cycle ergometer CPET and body analysis (BA) pre- and post-mild COVID-19 infection. Mild infection was defined as: (1) without hospitalization and (2) without prolonged health complications lasting for >14 days. Speed, power, heart rate (HR), oxygen uptake (VO2), pulmonary ventilation, blood lactate concentration (at the anaerobic threshold (AT)), respiratory compensation point (RCP), and maximum exertion were measured before and after COVID-19 infection. Pearson's and Spearman's r correlation coefficients and Student t-test were applied to assess relationship between physiologic or exercise variables and time. Results: The anthropometric measurements did not differ significantly before and after COVID-19. There was a significant reduction in VO2 at the AT and RCP (both p < 0.001). Pre-COVID-19 VO2 was 34.97 ± 6.43 ml kg·min-1, 43.88 ± 7.31 ml kg·min-1 and 47.81 ± 7.81 ml kg·min-1 respectively for AT, RCP and maximal and post-COVID-19 VO2 was 32.35 ± 5.93 ml kg·min-1, 40.49 ± 6.63 ml kg·min-1 and 44.97 ± 7.00 ml kg·min-1 respectively for AT, RCP and maximal. Differences of HR at AT (p < 0.001) and RCP (p < 0.001) was observed. The HR before infection was 145.08 ± 10.82 bpm for AT and 168.78 ± 9.01 bpm for RCP and HR after infection was 141.12 ± 9.99 bpm for AT and 165.14 ± 9.74 bpm for RCP. Time-adjusted measures showed significance for body fat (r = 0.46, p < 0.001), fat mass (r = 0.33, p = 0.020), cycling power at the AT (r = -0.29, p = 0.045), and HR at RCP (r = -0.30, p = 0.036). Conclusion: A mild COVID-19 infection resulted in a decrease in EA's CPET performance. The most significant changes were observed for VO2 and HR. Medical Professionals and Training Specialists should be aware of the consequences of a mild COVID-19 infection in order to recommend optimal therapeutic methods and properly adjust the intensity of training.

3.
Health Sci Rep ; 5(6): e929, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2127736

ABSTRACT

Background and Aims: The goal of the present study was to systematically evaluate the effect of a booster vaccination with the BNT162b2 messenger RNA (mRNA; Pfizer-BioNTech®) vaccine on maximum oxygen uptake (VO2 max), potential signs of (peri)myocarditis, and sports participation. Methods: Recreational athletes who were scheduled to undergo booster vaccination were evaluated with transthoracic echocardiography, serum measurements of high-sensitivity C-reactive protein(hsCRP) and high-sensitivity troponin I, and a bicycle cardiopulmonary exercise test (CPET) with serum lactate evaluation before the booster vaccine administration. Seven days postvaccination the test battery was repeated. Additionally, the subjects were asked to fill in a questionnaire on side effects and a subjective evaluation of their relative training volume and intensity as compared to the weeks before vaccination. Results: A group of 42 analysed athletes showed a statistically significant 2.7% decrease in VO2 max after vaccination (mean standard error of mean pre: 48.6 (1.4) ml/kg/min; post: 47.3 (1.4) ml/kg/min; p = 0.004). A potentially clinically relevant decrease of 8.6% or more occurred in 8 (19%) athletes. Other CPET parameters and lactate curves were comparable. We found no serological or echocardiographic evidence of (peri)myocarditis. A slight but significant increase in hsCRP was noted 1 week after vaccination. Side effects were mild and sports participation was generally unchanged or mildly decreased after vaccination. Conclusion: In our population of recreational endurance athletes, booster vaccination with the BNT162b2 mRNA vaccine resulted in a statistically significant decrease in VO2max 7 days after vaccination. The clinical impact hereof needs to be further determined. No major adverse events were observed.

4.
Healthcare (Basel) ; 10(4)2022 Mar 28.
Article in English | MEDLINE | ID: covidwho-1834785

ABSTRACT

COVID-19 containment measures hampered population cardiorespiratory fitness (which can be quantified as peak oxygen consumption (V.O2peak)) and the possibility to assess it using laboratory-based techniques. Although it is useful to ascertain the V.O2peak recovery after lockdowns, the community and most scientific institutions were unable to evaluate it. Wearable devices may provide the opportunity to estimate cardiorespiratory fitness outside of the laboratory, without breaking self-isolation; herein, we explore the feasibility of this approach. Fifteen healthy participants were tested every 2 weeks for 10 weeks during a reduction of containment measures after a strict lockdown. Physical activity levels were measured using the International Physical Activity Questionnaire-Short Form (IPAQ-SF). V.O2peak was estimated through a previously validated test based on the speed of a 60 m sprint run, the baseline-to-peak heart rate (HR) variation, and the velocity of HR decay after the sprint, and measured through a wearable HR monitor. Participants increased physical activity from the end of lockdown (1833 [917-2594] MET-min/week; median [1st quartile-3rd quartile]) until the end of follow-up (2730 [1325-3380] MET-min/week). The estimated V.O2peak increased by 0.24 ± 0.19 mL/(min*kg*week) (regression coefficient ± standard error). Based on previous knowledge on the impact of inactivity on V.O2peak, our study indicates that a 10-week period of reducing the stringency of containment measures may not be sufficient to counteract the detrimental effects of the preceding lockdown.

5.
Indian J Pharmacol ; 54(1): 58-62, 2022.
Article in English | MEDLINE | ID: covidwho-1818388

ABSTRACT

The decline in human performance with age at 5000 m, an athletic event requiring high VO2 max, is remarkably precise, and unavoidable, and related to entropy, even at an individual level. Women and men show an identical age-related decline, up to ~100 years old. The precision of the decline shows the limitations for therapy of aging. Mortality incidence for COVID-19 shows a similar relationship. We propose that initial VO2 max has a critical role in COVID sensitivity because of the direct relationship of disease severity with oxygen use, and the parallel decline in aging.


Subject(s)
COVID-19 , Sports , Aged, 80 and over , Aging , Entropy , Female , Humans , Male , Oxygen Consumption
6.
Prakticky Lekar ; 101(5):250-256, 2021.
Article in Czech | Scopus | ID: covidwho-1696551

ABSTRACT

Almost everyone will experience a short-term lack of physical activity during their lifetime. In athletes who train regularly, the rea-son is most often an acute illness or injury. In the untrained population, restrictions on physical activity at any age are most often linked to health problems, but may also be related to anti-pandemic measures, as we have recently seen in the global fight against the COVID-19 pandemic. As "detraining" we mean a condition that occurs with such an extraordinary reducing of physical activity. It is manifested mainly by a decrease or loss of adaptive abilities, achieved by previous training or previous normal daily physical activity. In athletes there is a decrease in performance, in average fit people there is a weakening of the state of health, which requi-res convalescence. For people who have previously suffered from health problems, "detraining" can lead to loss of independence and deepening of their frailty to complete dependence on the environment. In the prevention of these negative consequences, it is necessary to reduce the period of restriction of movement to a minimum, ensure sufficient protein in the diet, minimize time spent in bed or sedentary and use online instruction on how to exercise at home. Otherwise, only a few weeks without optimal movement leads to a very significant reduction in physical condition, manifested in particular by a very significant decrease of adaptations earned from training especialy of cardiorespiratory capacity. © 2021, Czech Medical Association J.E. Purkyne. All rights reserved.

7.
14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2021 ; 2021.
Article in English | Scopus | ID: covidwho-1672581

ABSTRACT

The COVID-Sars19 virus was a big problem in sports too. Before the Olympics, lots of Athletes lost motivation and the infected athletes lost some time from the preparation or missed the last qualification chance. The most important question how can we reduce the recovery time after the infection what is safety, without any cardiac risk. In our research, we create one new protocol that can reduce this time and the athletes don't lose too much time and don't lose their performance. © 2021 IEEE.

8.
Biol Sport ; 38(4): 733-740, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1596804

ABSTRACT

During the COVID-19 lockdown, professional soccer players ceased their regular team training sessions and were provided with exercise programs to follow independently. This investigation assessed the impact of a 7-week COVID-19 lockdown and home-based individual physical training on professional soccer players' body composition and physical fitness. The study consisted of nineteen division 1 elite soccer players (age 27.68 ± 5.99 years, height 178.47 ± 5.44 cm) and compared the anthropometric and physical fitness parameters obtained post-transition period to those obtained post-COVID-19 lockdown. The statistical analysis indicated that body fat percentage was significantly higher after the lockdown period [t(18) = -5.59, p < 0.01, d = 0.56]. Furthermore, VO2max [t(17) = -11.54, p < 0.01, d = 0.57] and running time [t(17) = 3.94, p < 0.01, d = 0.76] values were significantly higher after the COVID-19 lockdown than those obtained after the transition period. In addition, significantly higher level of performance was demonstrated on squat jump [t(18) = -4.10, p < 0.01, d = 0.30], countermovement jump [t(18) = -7.43, p < 0.01, d = 1.11] and sit and reach tests [t(19) = -5.33, p < 0.01, d = 0.32]. Concurrently, lower body strength was indicated to be significantly greater (p < 0.01) following the COVID-19 lockdown. The training protocol provided during the confinement, due to the COVID-19 outbreak, was effective in keeping physical fitness at a significantly higher level compared to the transition period. Coaches and trainers are encouraged to examine the effectiveness of this protocol, as it may help them develop effective periodization programs during the transition period. This protocol may aid in the development of effective periodization programs that require minimal equipment and can be followed in similar situations.

9.
Scand J Med Sci Sports ; 31(12): 2249-2258, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1434834

ABSTRACT

The study aimed to determine the levels of skeletal muscle angiotensin-converting enzyme 2 (ACE2, the SARS-CoV-2 receptor) protein expression in men and women and assess whether ACE2 expression in skeletal muscle is associated with cardiorespiratory fitness and adiposity. The level of ACE2 in vastus lateralis muscle biopsies collected in previous studies from 170 men (age: 19-65 years, weight: 56-137 kg, BMI: 23-44) and 69 women (age: 18-55 years, weight: 41-126 kg, BMI: 22-39) was analyzed in duplicate by western blot. VO2 max was determined by ergospirometry and body composition by DXA. ACE2 protein expression was 1.8-fold higher in women than men (p = 0.001, n = 239). This sex difference disappeared after accounting for the percentage of body fat (fat %), VO2 max per kg of legs lean mass (VO2 max-LLM) and age (p = 0.47). Multiple regression analysis showed that the fat % (ß = 0.47) is the main predictor of the variability in ACE2 protein expression in skeletal muscle, explaining 5.2% of the variance. VO2 max-LLM had also predictive value (ß = 0.09). There was a significant fat % by VO2 max-LLM interaction, such that for subjects with low fat %, VO2 max-LLM was positively associated with ACE2 expression while as fat % increased the slope of the positive association between VO2 max-LLM and ACE2 was reduced. In conclusion, women express higher amounts of ACE2 in their skeletal muscles than men. This sexual dimorphism is mainly explained by sex differences in fat % and cardiorespiratory fitness. The percentage of body fat is the main predictor of the variability in ACE2 protein expression in human skeletal muscle.


Subject(s)
Adiposity , Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Cardiorespiratory Fitness , Exercise , Muscle, Skeletal/metabolism , Adolescent , Adult , Angiotensin-Converting Enzyme 2/genetics , Biopsy , COVID-19/complications , COVID-19/epidemiology , Cross-Sectional Studies , Energy Metabolism , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Sex Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL